/* coherent noise function over 1, 2 or 3 dimensions */
/* (copyright Ken Perlin) */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "perlin.h"
#define B SAMPLE_SIZE
#define BM (SAMPLE_SIZE-1)
#define N 0x1000
#define NP 12 /* 2^N */
#define NM 0xfff
#define s_curve(t) ( t * t * (3.0f - 2.0f * t) )
#define lerp(t, a, b) ( a + t * (b - a) )
#define setup(i,b0,b1,r0,r1)\
t = vec[i] + N;\
b0 = ((int)t) & BM;\
b1 = (b0+1) & BM;\
r0 = t - (int)t;\
r1 = r0 - 1.0f;
float Perlin::noise1(float arg)
{
int bx0, bx1;
float rx0, rx1, sx, t, u, v, vec[1];
vec[0] = arg;
if (mStart)
{
srand(mSeed);
mStart = false;
init();
}
setup(0, bx0,bx1, rx0,rx1);
sx = s_curve(rx0);
u = rx0 * g1[ p[ bx0 ] ];
v = rx1 * g1[ p[ bx1 ] ];
return lerp(sx, u, v);
}
float Perlin::noise2(float vec[2])
{
int bx0, bx1, by0, by1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
int i, j;
if (mStart)
{
srand(mSeed);
mStart = false;
init();
}
setup(0,bx0,bx1,rx0,rx1);
setup(1,by0,by1,ry0,ry1);
i = p[bx0];
j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
sx = s_curve(rx0);
sy = s_curve(ry0);
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
q = g2[b00];
u = at2(rx0,ry0);
q = g2[b10];
v = at2(rx1,ry0);
a = lerp(sx, u, v);
q = g2[b01];
u = at2(rx0,ry1);
q = g2[b11];
v = at2(rx1,ry1);
b = lerp(sx, u, v);
return lerp(sy, a, b);
}
float Perlin::noise3(float vec[3])
{
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
int i, j;
if (mStart)
{
srand(mSeed);
mStart = false;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
setup(2, bz0,bz1, rz0,rz1);
i = p[ bx0 ];
j = p[ bx1 ];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
a = lerp(t, u, v);
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
b = lerp(t, u, v);
c = lerp(sy, a, b);
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
a = lerp(t, u, v);
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
b = lerp(t, u, v);
d = lerp(sy, a, b);
return lerp(sz, c, d);
}
void Perlin::normalize2(float v[2])
{
float s;
s = (float)sqrt(v[0] * v[0] + v[1] * v[1]);
s = 1.0f/s;
v[0] = v[0] * s;
v[1] = v[1] * s;
}
void Perlin::normalize3(float v[3])
{
float s;
s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
s = 1.0f/s;
v[0] = v[0] * s;
v[1] = v[1] * s;
v[2] = v[2] * s;
}
void Perlin::init(void)
{
int i, j, k;
for (i = 0 ; i < B ; i++)
{
p[i] = i;
g1[i] = (float)((rand() % (B + B)) - B) / B;
for (j = 0 ; j < 2 ; j++)
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize3(g3[i]);
}
while (--i)
{
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++)
{
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
g3[B + i][j] = g3[i][j];
}
}
float Perlin::perlin_noise_2D(float vec[2])
{
int terms = mOctaves;
float freq = mFrequency;
float result = 0.0f;
float amp = mAmplitude;
vec[0]*=mFrequency;
vec[1]*=mFrequency;
for( int i=0; i<terms; i++ )
{
result += noise2(vec)*amp;
vec[0] *= 2.0f;
vec[1] *= 2.0f;
amp*=0.5f;
}
return result;
}
Perlin::Perlin(int octaves,float freq,float amp,int seed)
{
mOctaves = octaves;
mFrequency = freq;
mAmplitude = amp;
mSeed = seed;
mStart = true;
}
|