|
GL_Export For 3DS Max Users
Submitted by |
If you are a 3DS Max user and want your Max scene to appear in your OpenGL project,
this smart utility does just that. Please read the provided readme.html.
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/Main.cpp] - (4,182 bytes)
#pragma comment(lib, "opengl32.lib")
#pragma comment(lib, "glu32.lib")
#pragma comment(lib, "glaux.lib")
#include "main.h"
#include <math.h>
#include "Camera.h"
// Include Your Header File Here
// Then Call Function CreateMaterialLib()
// Don't forget Create<YourObj/s>()
// in RenderScene() Call glCallList Function to Call your Objects ObjectID
#define INC 3.0
#define R_180 3.142857142
#define R_90 1.571428571
bool g_bFullScreen = 1; // Set full screen as default
HWND g_hWnd; // This is the handle for the window
RECT g_rRect; // This holds the window dimensions
HDC g_hDC; // General HDC - (handle to device context)
HGLRC g_hRC; // General OpenGL_DC - Our Rendering Context for OpenGL
HINSTANCE g_hInstance; // This holds the global hInstance for UnregisterClass() in DeInit()
float rotationH,rotationV;
Point3 CamPos, CamTar;
float thetha,thethaV=0;
float focullength=2;
float step=5;
GLfloat Vertex[] = { -75.0000, -50.0000, 0.0000,
75.0000, -50.0000, 0.0000,
-75.0000, 50.0000, 0.0000,
75.0000, 50.0000, 0.0000
};
GLfloat TVertex[] = { 0.0f, 0.0f,
1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
};
CCamera g_Camera;
UINT g_Texture[MAX_TEXTURES];
void Init(HWND hWnd)
{
g_hWnd = hWnd; // Assign the window handle to a global window handle
GetClientRect(g_hWnd, &g_rRect); // Assign the windows rectangle to a global RECT
InitializeOpenGL(g_rRect.right, g_rRect.bottom); // Init OpenGL with the global rect
// CreateMaterialLib() here and
// Object's Create Functions
g_Camera.PositionCamera( 10,150,12, 9,150,12, 0,1,0 );
g_Camera.SetCameraRadius(1);
}
WPARAM MainLoop()
{
MSG msg;
while(1) // Do our infinate loop
{ // Check if there was a message
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
if(msg.message == WM_QUIT) // If the message wasnt to quit
break;
TranslateMessage(&msg); // Find out what the message does
DispatchMessage(&msg); // Execute the message
}
else // if there wasn't a message
{
g_Camera.Update();
RenderScene(); // Redraw the scene every frame
}
}
DeInit(); // Free all the app's memory allocated
return(msg.wParam); // Return from the program
}
void RenderScene()
{
CamTar.x = CamPos.x+focullength*cos( thetha );
CamTar.z = CamPos.z+focullength*sin( thetha );
CamPos.y = 100;
CamTar.y = 100;
glVertexPointer( 3, GL_FLOAT, 0, Vertex );
glTexCoordPointer(2, GL_FLOAT, 0, TVertex );
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
g_Camera.Look();
glPushMatrix();
// Call Your Object Lists Here by
// glCallList()
// Like glCallList( BOX01 ) if BOX01 is defined.
glPopMatrix();
SwapBuffers(g_hDC); // Swap the backbuffers to the foreground
}
LRESULT CALLBACK WinProc(HWND hWnd,UINT uMsg, WPARAM wParam, LPARAM lParam)
{
LONG lRet = 0;
PAINTSTRUCT ps;
static int lxPos,lyPos;
static int xPos, yPos;
POINT mpos;
switch (uMsg)
{
case WM_SIZE: // If the window is resized
if(!g_bFullScreen) // Do this only if we are NOT in full screen
{
SizeOpenGLScreen(LOWORD(lParam),HIWORD(lParam));// LoWord=Width, HiWord=Height
GetClientRect(hWnd, &g_rRect);
}
break;
case WM_PAINT: // If we need to repaint the scene
BeginPaint(hWnd, &ps); // Init the paint struct
EndPaint(hWnd, &ps); // EndPaint, Clean up
break;
case WM_CLOSE: // If the window is being closes
PostQuitMessage(0); // Send a QUIT Message to the window
break;
default: // Return by default
lRet = DefWindowProc (hWnd, uMsg, wParam, lParam);
break;
}
return lRet; // Return by default
}
|
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/3DMath.h] - (4,395 bytes)
#ifndef _3DMATH_H
#define _3DMATH_H
#define PI 3.1415926535897932 // This is our famous PI
#define BEHIND 0
#define INTERSECTS 1
#define FRONT 2
// This is our basic 3D point/vector class
struct CVector3
{
public:
// A default constructor
CVector3() {}
CVector3( CVector3 *vPos )
{
x = vPos->x;
y = vPos->y;
z = vPos->z;
}
// This is our constructor that allows us to initialize our data upon creating an instance
CVector3(float X, float Y, float Z)
{
x = X; y = Y; z = Z;
}
// Here we overload the + operator so we can add vectors together
CVector3 operator+(CVector3 vVector)
{
// Return the added vectors result.
return CVector3(vVector.x + x, vVector.y + y, vVector.z + z);
}
// Here we overload the - operator so we can subtract vectors
CVector3 operator-(CVector3 vVector)
{
// Return the subtracted vectors result
return CVector3(x - vVector.x, y - vVector.y, z - vVector.z);
}
// Here we overload the * operator so we can multiply by scalars
CVector3 operator*(float num)
{
// Return the scaled vector
return CVector3(x * num, y * num, z * num);
}
// Here we overload the / operator so we can divide by a scalar
CVector3 operator/(float num)
{
// Return the scale vector
return CVector3(x / num, y / num, z / num);
}
float x, y, z;
};
// This returns the absolute value of "num"
float Absolute(float num);
// This returns a perpendicular vector from 2 given vectors by taking the cross product.
CVector3 Cross(CVector3 vVector1, CVector3 vVector2);
// This returns the magnitude of a normal (or any other vector)
float Magnitude(CVector3 vNormal);
// This returns a normalize vector (A vector exactly of length 1)
CVector3 Normalize(CVector3 vNormal);
// This returns the normal of a polygon (The direction the polygon is facing)
CVector3 Normal(CVector3 vPolygon[]);
// This returns the distance between 2 3D points
float Distance(CVector3 vPoint1, CVector3 vPoint2);
// This returns the point on the line segment vA_vB that is closest to point vPoint
CVector3 ClosestPointOnLine(CVector3 vA, CVector3 vB, CVector3 vPoint);
// This returns the distance the plane is from the origin (0, 0, 0)
// It takes the normal to the plane, along with ANY point that lies on the plane (any corner)
float PlaneDistance(CVector3 Normal, CVector3 Point);
// This takes a triangle (plane) and line and returns true if they intersected
bool IntersectedPlane(CVector3 vPoly[], CVector3 vLine[], CVector3 &vNormal, float &originDistance);
// This returns the dot product between 2 vectors
float Dot(CVector3 vVector1, CVector3 vVector2);
// This returns the angle between 2 vectors
double AngleBetweenVectors(CVector3 Vector1, CVector3 Vector2);
// This returns an intersection point of a polygon and a line (assuming intersects the plane)
CVector3 IntersectionPoint(CVector3 vNormal, CVector3 vLine[], double distance);
// This returns true if the intersection point is inside of the polygon
bool InsidePolygon(CVector3 vIntersection, CVector3 Poly[], long verticeCount);
// Use this function to test collision between a line and polygon
bool IntersectedPolygon(CVector3 vPoly[], CVector3 vLine[], int verticeCount);
// This function classifies a sphere according to a plane. (BEHIND, in FRONT, or INTERSECTS)
int ClassifySphere(CVector3 &vCenter,
CVector3 &vNormal, CVector3 &vPoint, float radius, float &distance);
// This takes in the sphere center, radius, polygon vertices and vertex count.
// This function is only called if the intersection point failed. The sphere
// could still possibly be intersecting the polygon, but on it's edges.
bool EdgeSphereCollision(CVector3 &vCenter,
CVector3 vPolygon[], int vertexCount, float radius);
// This returns true if the sphere is intersecting with the polygon.
bool SpherePolygonCollision(CVector3 vPolygon[],
CVector3 &vCenter, int vertexCount, float radius);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This returns the offset the sphere needs to move in order to not intersect the plane
CVector3 GetCollisionOffset(CVector3 &vNormal, float radius, float distance);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
#endif
|
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/Camera.cpp] - (13,155 bytes)
//***********************************************************************//
// //
// - "Talk to me like I'm a 3 year old!" Programming Lessons - //
// //
// $Author: DigiBen DigiBen@GameTutorials.com //
// //
// $Program: BSP Loader //
// //
// $Description: Loads faces and textures from a Quake3 BSP file //
// //
// $Date: 5/9/02 //
// //
//***********************************************************************//
#include "main.h"
#include "Camera.h"
// We increased the speed a bit from the Camera Strafing Tutorial
// This is how fast our camera moves
#define kSpeed 190.0f
// Our global float that stores the elapsed time between the current and last frame
float g_FrameInterval = 0.0f;
///////////////////////////////// CALCULATE FRAME RATE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This function calculates the frame rate and time intervals between frames
/////
///////////////////////////////// CALCULATE FRAME RATE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CalculateFrameRate()
{
static float framesPerSecond = 0.0f; // This will store our fps
static float lastTime = 0.0f; // This will hold the time from the last frame
static char strFrameRate[50] = {0}; // We will store the string here for the window title
static float frameTime = 0.0f; // This stores the last frame's time
// Get the current time in seconds
float currentTime = timeGetTime() * 0.001f;
// Here we store the elapsed time between the current and last frame,
// then keep the current frame in our static variable for the next frame.
g_FrameInterval = currentTime - frameTime;
frameTime = currentTime;
// Increase the frame counter
++framesPerSecond;
// Now we want to subtract the current time by the last time that was stored
// to see if the time elapsed has been over a second, which means we found our FPS.
if( currentTime - lastTime > 1.0f )
{
// Here we set the lastTime to the currentTime
lastTime = currentTime;
// Copy the frames per second into a string to display in the window title bar
sprintf(strFrameRate, "Current Frames Per Second: %d", int(framesPerSecond));
// Set the window title bar to our string
SetWindowText(g_hWnd, strFrameRate);
// Reset the frames per second
framesPerSecond = 0;
}
}
///////////////////////////////// CCAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This is the class constructor
/////
///////////////////////////////// CCAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CCamera::CCamera()
{
CVector3 vZero = CVector3(0.0, 0.0, 0.0); // Init a vVector to 0 0 0 for our position
CVector3 vView = CVector3(0.0, 1.0, 0.5); // Init a starting view vVector (looking up and out the screen)
CVector3 vUp = CVector3(0.0, 0.0, 1.0); // Init a standard up vVector (Rarely ever changes)
m_vPosition = vZero; // Init the position to zero
m_vView = vView; // Init the view to a std starting view
m_vUpVector = vUp; // Init the UpVector
for( int i=0; i<10 ; i++ )
{
for( int j=0 ; j<10 ; j++ )
{
if( i==0 || j==0 || i==9 || j==9 )
Map[i][j] = 1;
else
Map[i][j] = 0;
}
}
}
///////////////////////////////// POSITION CAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This function sets the camera's position and view and up vVector.
/////
///////////////////////////////// POSITION CAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CCamera::PositionCamera(float positionX, float positionY, float positionZ,
float viewX, float viewY, float viewZ,
float upVectorX, float upVectorY, float upVectorZ)
{
CVector3 vPosition = CVector3(positionX, positionY, positionZ);
CVector3 vView = CVector3(viewX, viewY, viewZ);
CVector3 vUpVector = CVector3(upVectorX, upVectorY, upVectorZ);
// The code above just makes it cleaner to set the variables.
// Otherwise we would have to set each variable x y and z.
m_vPosition = vPosition; // Assign the position
m_vView = vView; // Assign the view
m_vUpVector = vUpVector; // Assign the up vector
}
///////////////////////////////// SET VIEW BY MOUSE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This allows us to look around using the mouse, like in most first person games.
/////
///////////////////////////////// SET VIEW BY MOUSE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CCamera::SetViewByMouse()
{
POINT mousePos; // This is a window structure that holds an X and Y
int middleX = SCREEN_WIDTH >> 1; // This is a binary shift to get half the width
int middleY = SCREEN_HEIGHT >> 1; // This is a binary shift to get half the height
float angleY = 0.0f; // This is the direction for looking up or down
float angleZ = 0.0f; // This will be the value we need to rotate around the Y axis (Left and Right)
static float currentRotX = 0.0f;
// Get the mouse's current X,Y position
GetCursorPos(&mousePos);
// If our cursor is still in the middle, we never moved... so don't update the screen
if( (mousePos.x == middleX) && (mousePos.y == middleY) ) return;
// Set the mouse position to the middle of our window
SetCursorPos(middleX, middleY);
// Get the direction the mouse moved in, but bring the number down to a reasonable amount
angleY = (float)( (middleX - mousePos.x) ) / 500.0f;
angleZ = (float)( (middleY - mousePos.y) ) / 500.0f;
// Here we keep track of the current rotation (for up and down) so that
// we can restrict the camera from doing a full 360 loop.
currentRotX -= angleZ;
/* Kapil This is desable because it restricts the viewing angle
// If the current rotation (in radians) is greater than 1.0, we want to cap it.
if(currentRotX > 1.0f)
currentRotX = 1.0f;
// Check if the rotation is below -1.0, if so we want to make sure it doesn't continue
else if(currentRotX < -1.0f)
currentRotX = -1.0f;
// Otherwise, we can rotate the view around our position
else
{*/
// To find the axis we need to rotate around for up and down
// movements, we need to get a perpendicular vector from the
// camera's view vector and up vector. This will be the axis.
CVector3 vAxis = Cross(m_vView - m_vPosition, m_vUpVector);
vAxis = Normalize(vAxis);
// Rotate around our perpendicular axis and along the y-axis
RotateView(angleZ, vAxis.x, vAxis.y, vAxis.z);
RotateView(angleY, 0, 1, 0);
//}
}
///////////////////////////////// ROTATE VIEW \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This rotates the view around the position using an axis-angle rotation
/////
///////////////////////////////// ROTATE VIEW \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CCamera::RotateView(float angle, float x, float y, float z)
{
CVector3 vNewView;
// Get the view vector (The direction we are facing)
CVector3 vView = m_vView - m_vPosition;
// Calculate the sine and cosine of the angle once
float cosTheta = (float)cos(angle);
float sinTheta = (float)sin(angle);
// Find the new x position for the new rotated point
vNewView.x = (cosTheta + (1 - cosTheta) * x * x) * vView.x;
vNewView.x += ((1 - cosTheta) * x * y - z * sinTheta) * vView.y;
vNewView.x += ((1 - cosTheta) * x * z + y * sinTheta) * vView.z;
// Find the new y position for the new rotated point
vNewView.y = ((1 - cosTheta) * x * y + z * sinTheta) * vView.x;
vNewView.y += (cosTheta + (1 - cosTheta) * y * y) * vView.y;
vNewView.y += ((1 - cosTheta) * y * z - x * sinTheta) * vView.z;
// Find the new z position for the new rotated point
vNewView.z = ((1 - cosTheta) * x * z - y * sinTheta) * vView.x;
vNewView.z += ((1 - cosTheta) * y * z + x * sinTheta) * vView.y;
vNewView.z += (cosTheta + (1 - cosTheta) * z * z) * vView.z;
// Now we just add the newly rotated vector to our position to set
// our new rotated view of our camera.
m_vView = m_vPosition + vNewView;
}
///////////////////////////////// STRAFE CAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This strafes the camera left and right depending on the speed (-/+)
/////
///////////////////////////////// STRAFE CAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CCamera::StrafeCamera(float speed)
{
// Add the strafe vector to our position
CVector3 m_vPosition1 ( &m_vPosition ),m_vView1( &m_vView );
m_vPosition1.x += m_vStrafe.x * speed;
m_vPosition1.z += m_vStrafe.z * speed;
// Add the strafe vector to our view
m_vView1.x += m_vStrafe.x * speed;
m_vView1.z += m_vStrafe.z * speed;
if( m_vPosition1.x > -800 && m_vPosition1.x < 230
&& m_vPosition1.z > -190 && m_vPosition1.z < 770 )
{
m_vPosition.x = m_vPosition1.x;
m_vPosition.z = m_vPosition1.z;
m_vView.x = m_vView1.x;
m_vView.z = m_vView1.z;
}
}
///////////////////////////////// MOVE CAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This will move the camera forward or backward depending on the speed
/////
///////////////////////////////// MOVE CAMERA \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CCamera::MoveCamera(float speed)
{
// Get the current view vector (the direction we are looking)
CVector3 m_vPosition1 ( &m_vPosition ),m_vView1( &m_vView );
CVector3 vVector = m_vView - m_vPosition;
vVector = Normalize(vVector);
m_vPosition1.x += vVector.x * speed; // Add our acceleration to our position's X
m_vPosition1.y += vVector.y * speed; // Add our acceleration to our position's Y
m_vPosition1.z += vVector.z * speed; // Add our acceleration to our position's Z
m_vView1.x += vVector.x * speed; // Add our acceleration to our view's X
m_vView1.y += vVector.y * speed; // Add our acceleration to our view's Y
m_vView1.z += vVector.z * speed; // Add our acceleration to our view's Z
// Here should be the collision testing condition.....
if( m_vPosition1.x > -800 && m_vPosition1.x < 230
&& m_vPosition1.z > -190 && m_vPosition1.z < 770 )
{
m_vPosition.x = m_vPosition1.x;
m_vPosition.y = m_vPosition1.y;
m_vPosition.z = m_vPosition1.z;
m_vView.x = m_vView1.x;
m_vView.y = m_vView1.y;
m_vView.z = m_vView1.z;
}
}
//////////// *** NEW *** ////////// *** NEW *** ///////////// *** NEW *** ////////////////////
///////////////////////////////// CHECK CAMERA COLLISION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks all the polygons in our list and offsets the camera if collided
/////
///////////////////////////////// CHECK CAMERA COLLISION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CCamera::CheckCameraCollision(CVector3 *pVertices, int numOfVerts)
{
for(int i = 0; i < numOfVerts; i += 3)
{
CVector3 vTriangle[3] = { pVertices[i], pVertices[i+1], pVertices[i+2] };
CVector3 vNormal = Normal(vTriangle);
float distance = 0.0f;
int classification = ClassifySphere(m_vPosition, vNormal, vTriangle[0], m_radius, distance);
if(classification == INTERSECTS)
{
CVector3 vOffset = vNormal * distance;
CVector3 vIntersection = m_vPosition - vOffset;
if(InsidePolygon(vIntersection, vTriangle, 3) ||
EdgeSphereCollision(m_vPosition, vTriangle, 3, m_radius / 2))
{
vOffset = GetCollisionOffset(vNormal, m_radius, distance);
m_vPosition = m_vPosition + vOffset;
m_vView = m_vView + vOffset;
}
}
}
}
void CCamera::CheckForMovement()
{
float speed = kSpeed * g_FrameInterval;
x = (m_vView.x + 750 )/100;
y = (m_vView.z + 180 )/100;
if(GetKeyState(VK_UP) & 0x80 || GetKeyState('W') & 0x80)
{
MoveCamera(speed);
}
if(GetKeyState(VK_DOWN) & 0x80 || GetKeyState('S') & 0x80)
{
MoveCamera(-speed);
}
if(GetKeyState(VK_LEFT) & 0x80 || GetKeyState('A') & 0x80)
{
StrafeCamera(-speed);
}
// Check if we hit the Right arrow or the 'd' key
if(GetKeyState(VK_RIGHT) & 0x80 || GetKeyState('D') & 0x80) {
// Strafe the camera right
StrafeCamera(speed);
}
}
void CCamera::Update()
{
// Initialize a variable for the cross product result
CVector3 vCross = Cross(m_vView - m_vPosition, m_vUpVector);
// Normalize the strafe vector
m_vStrafe = Normalize(vCross);
// Move the camera's view by the mouse
SetViewByMouse();
// This checks to see if the keyboard was pressed
CheckForMovement();
// Calculate our frame rate and set our frame interval for time based movement
CalculateFrameRate();
}
void CCamera::Look()
{
gluLookAt(m_vPosition.x, m_vPosition.y, m_vPosition.z,
m_vView.x, m_vView.y, m_vView.z,
m_vUpVector.x, m_vUpVector.y, m_vUpVector.z);
}
/////////////////////////////////////////////////////////////////////////////////
//
// * QUICK NOTES *
//
//
//
// Ben Humphrey (DigiBen)
// Game Programmer
// DigiBen@GameTutorials.com
// Co-Web Host of www.GameTutorials.com
//
//
|
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/Camera.h] - (2,740 bytes)
#ifndef _CAMERA_H
#define _CAMERA_H
#include <mmsystem.h>
class CCamera {
public:
int x, y;
int Map[10][10];
// Our camera constructor
CCamera();
// These are are data access functions for our camera's private data
CVector3 Position()
{
return m_vPosition;
}
CVector3 View() { return m_vView; }
CVector3 UpVector() { return m_vUpVector; }
CVector3 Strafe() { return m_vStrafe; }
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This intializes the camera's sphere radius
void SetCameraRadius(float radius) { m_radius = radius; };
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This changes the position, view, and up vector of the camera.
// This is primarily used for initialization
void PositionCamera(float positionX, float positionY, float positionZ,
float viewX, float viewY, float viewZ,
float upVectorX, float upVectorY, float upVectorZ);
// This rotates the camera's view around the position depending on the values passed in.
void RotateView(float angle, float X, float Y, float Z);
// This moves the camera's view by the mouse movements (First person view)
void SetViewByMouse();
// This rotates the camera around a point (I.E. your character).
void RotateAroundPoint(CVector3 vCenter, float X, float Y, float Z);
// This strafes the camera left or right depending on the speed (+/-)
void StrafeCamera(float speed);
// This will move the camera forward or backward depending on the speed
void MoveCamera(float speed);
// This checks for keyboard movement
void CheckForMovement();
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This takes a list of vertices and the vertex count to determine if the camera's
// shere has collided with them.
void CheckCameraCollision(CVector3 *pVertices, int numOfVerts);
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This updates the camera's view and other data (Should be called each frame)
void Update();
// This uses gluLookAt() to tell OpenGL where to look
void Look();
private:
// The camera's position
CVector3 m_vPosition;
// The camera's view
CVector3 m_vView;
// The camera's up vector
CVector3 m_vUpVector;
// The camera's strafe vector
CVector3 m_vStrafe;
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// The camera's collision radius
float m_radius;
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
};
#endif
|
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/Init.cpp] - (7,758 bytes)
#include "main.h"
void CreateTexture(UINT textureArray[], LPSTR strFileName, int textureID)
{
AUX_RGBImageRec *pBitmap = NULL;
if(!strFileName)
return;
pBitmap = auxDIBImageLoad( strFileName );
if(pBitmap == NULL)
exit(0);
glGenTextures(1, &textureArray[textureID]);
glBindTexture(GL_TEXTURE_2D, textureArray[textureID]);
gluBuild2DMipmaps(GL_TEXTURE_2D, 3,
pBitmap->sizeX, pBitmap->sizeY,
GL_RGB, GL_UNSIGNED_BYTE, pBitmap->data);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST);//GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR_MIPMAP_LINEAR);//GL_NEAREST);
//GL_NEAREST
if (pBitmap) // If we loaded the bitmap
{
if (pBitmap->data) // If there is texture data
{
free(pBitmap->data); // Free the texture data, we don't need it anymore
}
free(pBitmap); // Free the bitmap structure
}
}
void ChangeToFullScreen()
{
DEVMODE dmSettings; // Device Mode variable
memset(&dmSettings,0,sizeof(dmSettings)); // Makes Sure Memory's Cleared
if(!EnumDisplaySettings(NULL,ENUM_CURRENT_SETTINGS,&dmSettings))
{
MessageBox(NULL, "Could No t Enum Display Settings", "Error", MB_OK);
return;
}
dmSettings.dmPelsWidth = SCREEN_WIDTH; // Selected Screen Width
dmSettings.dmPelsHeight = SCREEN_HEIGHT; // Selected Screen Height
int result = ChangeDisplaySettings(&dmSettings,CDS_FULLSCREEN);
if(result != DISP_CHANGE_SUCCESSFUL)
{
MessageBox(NULL, "Display Mode Not Compatible", "Error", MB_OK);
PostQuitMessage(0);
}
}
HWND CreateMyWindow(LPSTR strWindowName, int width, int height, DWORD dwStyle, bool bFullScreen, HINSTANCE hInstance)
{
HWND hWnd;
WNDCLASS wndclass;
memset(&wndclass, 0, sizeof(WNDCLASS)); // Init the size of the class
wndclass.style = CS_HREDRAW | CS_VREDRAW; // Regular drawing capabilities
wndclass.lpfnWndProc = WinProc; // Pass our function pointer as the window procedure
wndclass.hInstance = hInstance; // Assign our hInstance
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // General icon
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW); // An arrow for the cursor
wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW+1); // A white window
wndclass.lpszClassName = "GameTutorials"; // Assign the class name
RegisterClass(&wndclass); // Register the class
if(bFullScreen && !dwStyle) // Check if we wanted full screen mode
{ // Set the window properties for full screen mode
dwStyle = WS_POPUP | WS_CLIPSIBLINGS | WS_CLIPCHILDREN;
ChangeToFullScreen(); // Go to full screen
ShowCursor(FALSE); // Hide the cursor
}
else if(!dwStyle) // Assign styles to the window depending on the choice
dwStyle = WS_OVERLAPPEDWINDOW | WS_CLIPSIBLINGS | WS_CLIPCHILDREN;
g_hInstance = hInstance; // Assign our global hInstance to the window's hInstance
RECT rWindow;
rWindow.left = 0; // Set Left Value To 0
rWindow.right = width; // Set Right Value To Requested Width
rWindow.top = 0; // Set Top Value To 0
rWindow.bottom = height; // Set Bottom Value To Requested Height
AdjustWindowRect( &rWindow, dwStyle, false); // Adjust Window To True Requested Size
// Create the window
hWnd = CreateWindow("GameTutorials", strWindowName, dwStyle, 0, 0,
rWindow.right - rWindow.left, rWindow.bottom - rWindow.top,
NULL, NULL, hInstance, NULL);
if(!hWnd) return NULL; // If we could get a handle, return NULL
ShowWindow(hWnd, SW_SHOWNORMAL); // Show the window
UpdateWindow(hWnd); // Draw the window
SetFocus(hWnd); // Sets Keyboard Focus To The Window
return hWnd;
}
bool bSetupPixelFormat(HDC hdc)
{
PIXELFORMATDESCRIPTOR pfd;
int pixelformat;
pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR); // Set the size of the structure
pfd.nVersion = 1; // Always set this to 1
// Pass in the appropriate OpenGL flags
pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER;
pfd.dwLayerMask = PFD_MAIN_PLANE; // We want the standard mask (this is ignored anyway)
pfd.iPixelType = PFD_TYPE_RGBA; // We want RGB and Alpha pixel type
pfd.cColorBits = SCREEN_DEPTH; // Here we use our #define for the color bits
pfd.cDepthBits = SCREEN_DEPTH; // Depthbits is ignored for RGBA, but we do it anyway
pfd.cAccumBits = 0; // No special bitplanes needed
pfd.cStencilBits = 0; // We desire no stencil bits
if ( (pixelformat = ChoosePixelFormat(hdc, &pfd)) == FALSE )
{
MessageBox(NULL, "ChoosePixelFormat failed", "Error", MB_OK);
return FALSE;
}
if (SetPixelFormat(hdc, pixelformat, &pfd) == FALSE)
{
MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);
return FALSE;
}
return TRUE; // Return a success!
}
void SizeOpenGLScreen(int width, int height) // Initialize The GL Window
{
if (height==0) // Prevent A Divide By Zero error
{
height=1; // Make the Height Equal One
}
glClearIndex( 0.0f );
glClearDepth( 1.0f );
glEnable( GL_DEPTH_TEST );
glViewport(0,0,width,height); // Make our viewport the whole window
glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height, 10.0f ,2000.0f);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
glLoadIdentity(); // Reset The Modelview Matrix
glEnable( GL_LIGHTING );
glEnable( GL_LIGHT0 );
}
void InitializeOpenGL(int width, int height)
{
g_hDC = GetDC(g_hWnd); // This sets our global HDC
// We don't free this hdc until the end of our program
if (!bSetupPixelFormat(g_hDC)) // This sets our pixel format/information
PostQuitMessage (0); // If there's an error, quit
g_hRC = wglCreateContext(g_hDC); // This creates a rendering context from our hdc
wglMakeCurrent(g_hDC, g_hRC); // This makes the rendering context we just created the one we want to use
glEnable(GL_TEXTURE_2D);
glCullFace( GL_FRONT );
glEnable( GL_CULL_FACE );
GLfloat Amb[] ={ 2,2,2,1 };
glLightModelfv( GL_LIGHT_MODEL_AMBIENT, Amb );
SizeOpenGLScreen(width, height); // Setup the screen translations and viewport
}
void DeInit()
{
if (g_hRC)
{
wglMakeCurrent(NULL, NULL); // This frees our rendering memory and sets everything back to normal
wglDeleteContext(g_hRC); // Delete our OpenGL Rendering Context
}
if (g_hDC)
ReleaseDC(g_hWnd, g_hDC); // Release our HDC from memory
if(g_bFullScreen) // If we were in full screen
{
ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop
ShowCursor(TRUE); // Show Mouse Pointer
}
UnregisterClass("GameTutorials", g_hInstance); // Free the window class
PostQuitMessage (0); // Post a QUIT message to the window
}
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hprev, PSTR cmdline, int ishow)
{
HWND hWnd;
hWnd = CreateMyWindow("Hotel", SCREEN_WIDTH, SCREEN_HEIGHT, 0, g_bFullScreen, hInstance);
// If we never got a valid window handle, quit the program
if(hWnd == NULL) return TRUE;
// INIT OpenGL
Init(hWnd);
// Run our message loop and after it's done, return the result
return MainLoop();
}
|
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/3DMath.cpp] - (24,351 bytes)
//***********************************************************************//
// //
// - "Talk to me like I'm a 3 year old!" Programming Lessons - //
// //
// $Author: DigiBen digiben@gametutorials.com //
// //
// $Program: CameraWorldCollision //
// //
// $Description: Shows how to check if camera and world collide //
// //
// $Date: 1/23/02 //
// //
//***********************************************************************//
#include "main.h"
#include <math.h> // We include math.h so we can use the sqrt() function
#include <float.h> // This is so we can use _isnan() for acos()
/////////////////////////////////////// ABSOLUTE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the absolute value of the number passed in
/////
/////////////////////////////////////// ABSOLUTE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Absolute(float num)
{
// If num is less than zero, we want to return the absolute value of num.
// This is simple, either we times num by -1 or subtract it from 0.
if(num < 0)
return (0 - num);
// Return the original number because it was already positive
return num;
}
/////////////////////////////////////// CROSS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns a perpendicular vector from 2 given vectors by taking the cross product.
/////
/////////////////////////////////////// CROSS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 Cross(CVector3 vVector1, CVector3 vVector2)
{
CVector3 vNormal; // The vector to hold the cross product
// The X value for the vector is: (V1.y * V2.z) - (V1.z * V2.y) // Get the X value
vNormal.x = ((vVector1.y * vVector2.z) - (vVector1.z * vVector2.y));
// The Y value for the vector is: (V1.z * V2.x) - (V1.x * V2.z)
vNormal.y = ((vVector1.z * vVector2.x) - (vVector1.x * vVector2.z));
// The Z value for the vector is: (V1.x * V2.y) - (V1.y * V2.x)
vNormal.z = ((vVector1.x * vVector2.y) - (vVector1.y * vVector2.x));
return vNormal; // Return the cross product (Direction the polygon is facing - Normal)
}
/////////////////////////////////////// MAGNITUDE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the magnitude of a normal (or any other vector)
/////
/////////////////////////////////////// MAGNITUDE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Magnitude(CVector3 vNormal)
{
// This will give us the magnitude or "Norm" as some say, of our normal.
// Here is the equation: magnitude = sqrt(V.x^2 + V.y^2 + V.z^2) Where V is the vector
return (float)sqrt( (vNormal.x * vNormal.x) + (vNormal.y * vNormal.y) + (vNormal.z * vNormal.z) );
}
/////////////////////////////////////// NORMALIZE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns a normalize vector (A vector exactly of length 1)
/////
/////////////////////////////////////// NORMALIZE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 Normalize(CVector3 vNormal)
{
float magnitude = Magnitude(vNormal); // Get the magnitude of our normal
// Now that we have the magnitude, we can divide our normal by that magnitude.
// That will make our normal a total length of 1. This makes it easier to work with too.
vNormal.x /= magnitude; // Divide the X value of our normal by it's magnitude
vNormal.y /= magnitude; // Divide the Y value of our normal by it's magnitude
vNormal.z /= magnitude; // Divide the Z value of our normal by it's magnitude
// Finally, return our normalized normal.
return vNormal; // Return the new normal of length 1.
}
/////////////////////////////////////// NORMAL \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the normal of a polygon (The direction the polygon is facing)
/////
/////////////////////////////////////// NORMAL \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 Normal(CVector3 vPolygon[])
{ // Get 2 vectors from the polygon (2 sides), Remember the order!
CVector3 vVector1 = vPolygon[2] - vPolygon[0];
CVector3 vVector2 = vPolygon[1] - vPolygon[0];
CVector3 vNormal = Cross(vVector1, vVector2); // Take the cross product of our 2 vectors to get a perpendicular vector
// Now we have a normal, but it's at a strange length, so let's make it length 1.
vNormal = Normalize(vNormal); // Use our function we created to normalize the normal (Makes it a length of one)
return vNormal; // Return our normal at our desired length
}
/////////////////////////////////// DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the distance between 2 3D points
/////
/////////////////////////////////// DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Distance(CVector3 vPoint1, CVector3 vPoint2)
{
// This is the classic formula used in beginning algebra to return the
// distance between 2 points. Since it's 3D, we just add the z dimension:
//
// Distance = sqrt( (P2.x - P1.x)^2 + (P2.y - P1.y)^2 + (P2.z - P1.z)^2 )
//
double distance = sqrt( (vPoint2.x - vPoint1.x) * (vPoint2.x - vPoint1.x) +
(vPoint2.y - vPoint1.y) * (vPoint2.y - vPoint1.y) +
(vPoint2.z - vPoint1.z) * (vPoint2.z - vPoint1.z) );
// Return the distance between the 2 points
return (float)distance;
}
////////////////////////////// CLOSEST POINT ON LINE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the point on the line vA_vB that is closest to the point vPoint
/////
////////////////////////////// CLOSEST POINT ON LINE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 ClosestPointOnLine(CVector3 vA, CVector3 vB, CVector3 vPoint)
{
// Create the vector from end point vA to our point vPoint.
CVector3 vVector1 = vPoint - vA;
// Create a normalized direction vector from end point vA to end point vB
CVector3 vVector2 = Normalize(vB - vA);
// Use the distance formula to find the distance of the line segment (or magnitude)
float d = Distance(vA, vB);
// Using the dot product, we project the vVector1 onto the vector vVector2.
// This essentially gives us the distance from our projected vector from vA.
float t = Dot(vVector2, vVector1);
// If our projected distance from vA, "t", is less than or equal to 0, it must
// be closest to the end point vA. We want to return this end point.
if (t <= 0)
return vA;
// If our projected distance from vA, "t", is greater than or equal to the magnitude
// or distance of the line segment, it must be closest to the end point vB. So, return vB.
if (t >= d)
return vB;
// Here we create a vector that is of length t and in the direction of vVector2
CVector3 vVector3 = vVector2 * t;
// To find the closest point on the line segment, we just add vVector3 to the original
// end point vA.
CVector3 vClosestPoint = vA + vVector3;
// Return the closest point on the line segment
return vClosestPoint;
}
/////////////////////////////////// PLANE DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the distance between a plane and the origin
/////
/////////////////////////////////// PLANE DISTANCE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float PlaneDistance(CVector3 Normal, CVector3 Point)
{
float distance = 0; // This variable holds the distance from the plane tot he origin
// Use the plane equation to find the distance (Ax + By + Cz + D = 0) We want to find D.
// So, we come up with D = -(Ax + By + Cz)
// Basically, the negated dot product of the normal of the plane and the point. (More about the dot product in another tutorial)
distance = - ((Normal.x * Point.x) + (Normal.y * Point.y) + (Normal.z * Point.z));
return distance; // Return the distance
}
/////////////////////////////////// INTERSECTED PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks to see if a line intersects a plane
/////
/////////////////////////////////// INTERSECTED PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool IntersectedPlane(CVector3 vPoly[], CVector3 vLine[], CVector3 &vNormal, float &originDistance)
{
float distance1=0, distance2=0; // The distances from the 2 points of the line from the plane
vNormal = Normal(vPoly); // We need to get the normal of our plane to go any further
// Let's find the distance our plane is from the origin. We can find this value
// from the normal to the plane (polygon) and any point that lies on that plane (Any vertex)
originDistance = PlaneDistance(vNormal, vPoly[0]);
// Get the distance from point1 from the plane using: Ax + By + Cz + D = (The distance from the plane)
distance1 = ((vNormal.x * vLine[0].x) + // Ax +
(vNormal.y * vLine[0].y) + // Bx +
(vNormal.z * vLine[0].z)) + originDistance; // Cz + D
// Get the distance from point2 from the plane using Ax + By + Cz + D = (The distance from the plane)
distance2 = ((vNormal.x * vLine[1].x) + // Ax +
(vNormal.y * vLine[1].y) + // Bx +
(vNormal.z * vLine[1].z)) + originDistance; // Cz + D
// Now that we have 2 distances from the plane, if we times them together we either
// get a positive or negative number. If it's a negative number, that means we collided!
// This is because the 2 points must be on either side of the plane (IE. -1 * 1 = -1).
if(distance1 * distance2 >= 0) // Check to see if both point's distances are both negative or both positive
return false; // Return false if each point has the same sign. -1 and 1 would mean each point is on either side of the plane. -1 -2 or 3 4 wouldn't...
return true; // The line intersected the plane, Return TRUE
}
/////////////////////////////////// DOT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This computers the dot product of 2 vectors
/////
/////////////////////////////////// DOT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
float Dot(CVector3 vVector1, CVector3 vVector2)
{
// The dot product is this equation: V1.V2 = (V1.x * V2.x + V1.y * V2.y + V1.z * V2.z)
// In math terms, it looks like this: V1.V2 = ||V1|| ||V2|| cos(theta)
// (V1.x * V2.x + V1.y * V2.y + V1.z * V2.z)
return ( (vVector1.x * vVector2.x) + (vVector1.y * vVector2.y) + (vVector1.z * vVector2.z) );
}
/////////////////////////////////// ANGLE BETWEEN VECTORS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks to see if a point is inside the ranges of a polygon
/////
/////////////////////////////////// ANGLE BETWEEN VECTORS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
double AngleBetweenVectors(CVector3 Vector1, CVector3 Vector2)
{
// Get the dot product of the vectors
float dotProduct = Dot(Vector1, Vector2);
// Get the product of both of the vectors magnitudes
float vectorsMagnitude = Magnitude(Vector1) * Magnitude(Vector2) ;
// Get the angle in radians between the 2 vectors
double angle = acos( dotProduct / vectorsMagnitude );
// Here we make sure that the angle is not a -1.#IND0000000 number, which means indefinate
if(_isnan(angle))
return 0;
// Return the angle in radians
return( angle );
}
/////////////////////////////////// INTERSECTION POINT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the intersection point of the line that intersects the plane
/////
/////////////////////////////////// INTERSECTION POINT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 IntersectionPoint(CVector3 vNormal, CVector3 vLine[], double distance)
{
CVector3 vPoint, vLineDir; // Variables to hold the point and the line's direction
double Numerator = 0.0, Denominator = 0.0, dist = 0.0;
// 1) First we need to get the vector of our line, Then normalize it so it's a length of 1
vLineDir = vLine[1] - vLine[0]; // Get the Vector of the line
vLineDir = Normalize(vLineDir); // Normalize the lines vector
// 2) Use the plane equation (distance = Ax + By + Cz + D) to find the
// distance from one of our points to the plane.
Numerator = - (vNormal.x * vLine[0].x + // Use the plane equation with the normal and the line
vNormal.y * vLine[0].y +
vNormal.z * vLine[0].z + distance);
// 3) If we take the dot product between our line vector and the normal of the polygon,
Denominator = Dot(vNormal, vLineDir); // Get the dot product of the line's vector and the normal of the plane
// Since we are using division, we need to make sure we don't get a divide by zero error
// If we do get a 0, that means that there are INFINATE points because the the line is
// on the plane (the normal is perpendicular to the line - (Normal.Vector = 0)).
// In this case, we should just return any point on the line.
if( Denominator == 0.0) // Check so we don't divide by zero
return vLine[0]; // Return an arbitrary point on the line
dist = Numerator / Denominator; // Divide to get the multiplying (percentage) factor
// Now, like we said above, we times the dist by the vector, then add our arbitrary point.
vPoint.x = (float)(vLine[0].x + (vLineDir.x * dist));
vPoint.y = (float)(vLine[0].y + (vLineDir.y * dist));
vPoint.z = (float)(vLine[0].z + (vLineDir.z * dist));
return vPoint; // Return the intersection point
}
/////////////////////////////////// INSIDE POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks to see if a point is inside the ranges of a polygon
/////
/////////////////////////////////// INSIDE POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool InsidePolygon(CVector3 vIntersection, CVector3 Poly[], long verticeCount)
{
const double MATCH_FACTOR = 0.99; // Used to cover up the error in floating point
double Angle = 0.0; // Initialize the angle
CVector3 vA, vB; // Create temp vectors
for (int i = 0; i < verticeCount; i++) // Go in a circle to each vertex and get the angle between
{
vA = Poly[i] - vIntersection; // Subtract the intersection point from the current vertex
// Subtract the point from the next vertex
vB = Poly[(i + 1) % verticeCount] - vIntersection;
Angle += AngleBetweenVectors(vA, vB); // Find the angle between the 2 vectors and add them all up as we go along
}
if(Angle >= (MATCH_FACTOR * (2.0 * PI)) ) // If the angle is greater than 2 PI, (360 degrees)
return true; // The point is inside of the polygon
return false; // If you get here, it obviously wasn't inside the polygon, so Return FALSE
}
/////////////////////////////////// INTERSECTED POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This checks if a line is intersecting a polygon
/////
/////////////////////////////////// INTERSECTED POLYGON \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool IntersectedPolygon(CVector3 vPoly[], CVector3 vLine[], int verticeCount)
{
CVector3 vNormal;
float originDistance = 0;
// First, make sure our line intersects the plane
// Reference // Reference
if(!IntersectedPlane(vPoly, vLine, vNormal, originDistance))
return false;
// Now that we have our normal and distance passed back from IntersectedPlane(),
// we can use it to calculate the intersection point.
CVector3 vIntersection = IntersectionPoint(vNormal, vLine, originDistance);
// Now that we have the intersection point, we need to test if it's inside the polygon.
if(InsidePolygon(vIntersection, vPoly, verticeCount))
return true; // We collided! Return success
return false; // There was no collision, so return false
}
///////////////////////////////// CLASSIFY SPHERE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This tells if a sphere is BEHIND, in FRONT, or INTERSECTS a plane, also it's distance
/////
///////////////////////////////// CLASSIFY SPHERE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
int ClassifySphere(CVector3 &vCenter,
CVector3 &vNormal, CVector3 &vPoint, float radius, float &distance)
{
// First we need to find the distance our polygon plane is from the origin.
float d = (float)PlaneDistance(vNormal, vPoint);
// Here we use the famous distance formula to find the distance the center point
// of the sphere is from the polygon's plane.
distance = (vNormal.x * vCenter.x + vNormal.y * vCenter.y + vNormal.z * vCenter.z + d);
// If the absolute value of the distance we just found is less than the radius,
// the sphere intersected the plane.
if(Absolute(distance) < radius)
return INTERSECTS;
// Else, if the distance is greater than or equal to the radius, the sphere is
// completely in FRONT of the plane.
else if(distance >= radius)
return FRONT;
// If the sphere isn't intersecting or in FRONT of the plane, it must be BEHIND
return BEHIND;
}
///////////////////////////////// EDGE SPHERE COLLSIION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns true if the sphere is intersecting any of the edges of the polygon
/////
///////////////////////////////// EDGE SPHERE COLLSIION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool EdgeSphereCollision(CVector3 &vCenter,
CVector3 vPolygon[], int vertexCount, float radius)
{
CVector3 vPoint;
// This function takes in the sphere's center, the polygon's vertices, the vertex count
// and the radius of the sphere. We will return true from this function if the sphere
// is intersecting any of the edges of the polygon.
// Go through all of the vertices in the polygon
for(int i = 0; i < vertexCount; i++)
{
// This returns the closest point on the current edge to the center of the sphere.
vPoint = ClosestPointOnLine(vPolygon[i], vPolygon[(i + 1) % vertexCount], vCenter);
// Now, we want to calculate the distance between the closest point and the center
float distance = Distance(vPoint, vCenter);
// If the distance is less than the radius, there must be a collision so return true
if(distance < radius)
return true;
}
// The was no intersection of the sphere and the edges of the polygon
return false;
}
////////////////////////////// SPHERE POLYGON COLLISION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns true if our sphere collides with the polygon passed in
/////
////////////////////////////// SPHERE POLYGON COLLISION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool SpherePolygonCollision(CVector3 vPolygon[],
CVector3 &vCenter, int vertexCount, float radius)
{
// 1) STEP ONE - Finding the sphere's classification
// Let's use our Normal() function to return us the normal to this polygon
CVector3 vNormal = Normal(vPolygon);
// This will store the distance our sphere is from the plane
float distance = 0.0f;
// This is where we determine if the sphere is in FRONT, BEHIND, or INTERSECTS the plane
int classification = ClassifySphere(vCenter, vNormal, vPolygon[0], radius, distance);
// If the sphere intersects the polygon's plane, then we need to check further
if(classification == INTERSECTS)
{
// 2) STEP TWO - Finding the psuedo intersection point on the plane
// Now we want to project the sphere's center onto the polygon's plane
CVector3 vOffset = vNormal * distance;
// Once we have the offset to the plane, we just subtract it from the center
// of the sphere. "vPosition" now a point that lies on the plane of the polygon.
CVector3 vPosition = vCenter - vOffset;
// 3) STEP THREE - Check if the intersection point is inside the polygons perimeter
// If the intersection point is inside the perimeter of the polygon, it returns true.
// We pass in the intersection point, the list of vertices and vertex count of the poly.
if(InsidePolygon(vPosition, vPolygon, 3))
return true; // We collided!
else
{
// 4) STEP FOUR - Check the sphere intersects any of the polygon's edges
// If we get here, we didn't find an intersection point in the perimeter.
// We now need to check collision against the edges of the polygon.
if(EdgeSphereCollision(vCenter, vPolygon, vertexCount, radius))
{
return true; // We collided!
}
}
}
// If we get here, there is obviously no collision
return false;
}
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
///////////////////////////////// GET COLLISION OFFSET \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This returns the offset to move the center of the sphere off the collided polygon
/////
///////////////////////////////// GET COLLISION OFFSET \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
CVector3 GetCollisionOffset(CVector3 &vNormal, float radius, float distance)
{
CVector3 vOffset = CVector3(0, 0, 0);
// Once we find if a collision has taken place, we need make sure the sphere
// doesn't move into the wall. In our app, the position will actually move into
// the wall, but we check our collision detection before we render the scene, which
// eliminates the bounce back effect it would cause. The question is, how do we
// know which direction to move the sphere back? In our collision detection, we
// account for collisions on both sides of the polygon. Usually, you just need
// to worry about the side with the normal vector and positive distance. If
// you don't want to back face cull and have 2 sided planes, I check for both sides.
//
// Let me explain the math that is going on here. First, we have the normal to
// the plane, the radius of the sphere, as well as the distance the center of the
// sphere is from the plane. In the case of the sphere colliding in the front of
// the polygon, we can just subtract the distance from the radius, then multiply
// that new distance by the normal of the plane. This projects that leftover
// distance along the normal vector. For instance, say we have these values:
//
// vNormal = (1, 0, 0) radius = 5 distance = 3
//
// If we subtract the distance from the radius we get: (5 - 3 = 2)
// The number 2 tells us that our sphere is over the plane by a distance of 2.
// So basically, we need to move the sphere back 2 units. How do we know which
// direction though? This part is easy, we have a normal vector that tells us the
// direction of the plane.
// If we multiply the normal by the left over distance we get: (2, 0, 0)
// This new offset vectors tells us which direction and how much to move back.
// We then subtract this offset from the sphere's position, giving is the new
// position that is lying right on top of the plane. Ba da bing!
// If we are colliding from behind the polygon (not usual), we do the opposite
// signs as seen below:
// If our distance is greater than zero, we are in front of the polygon
if(distance > 0)
{
// Find the distance that our sphere is overlapping the plane, then
// find the direction vector to move our sphere.
float distanceOver = radius - distance;
vOffset = vNormal * distanceOver;
}
else // Else colliding from behind the polygon
{
// Find the distance that our sphere is overlapping the plane, then
// find the direction vector to move our sphere.
float distanceOver = radius + distance;
vOffset = vNormal * -distanceOver;
}
// There is one problem with check for collisions behind the polygon, and that
// is if you are moving really fast and your center goes past the front of the
// polygon, it will then assume you were colliding from behind and not let
// you back in. Most likely you will take out the if / else check, but I
// figured I would show both ways in case someone didn't want to back face cull.
// Return the offset we need to move back to not be intersecting the polygon.
return vOffset;
}
|
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/MAIN.H] - (3,151 bytes)
#ifndef _MAIN_H
#define _MAIN_H
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h>
#include <float.h>
#include <math.h>
#include "3DMath.h"
#include "Camera.h"
#define SCREEN_WIDTH 640 // We want our screen width 800 pixels
#define SCREEN_HEIGHT 480 // We want our screen height 600 pixels
#define SCREEN_DEPTH 8 // We want 16 bits per pixel
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
#define MAX_TEXTURES 1 // This says how many texture we will be using
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
extern bool g_bFullScreen; // Set full screen as default
extern HWND g_hWnd; // This is the handle for the window
extern RECT g_rRect; // This holds the window dimensions
extern HDC g_hDC; // General HDC - (handle to device context)
extern HGLRC g_hRC; // General OpenGL_DC - Our Rendering Context for OpenGL
extern HINSTANCE g_hInstance;
struct Point3
{
float x;
float y;
float z;
};
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
extern UINT g_Texture[MAX_TEXTURES]; // This is our texture data array
/////// * /////////// * /////////// * NEW * /////// * /////////// * /////////// *
// This is our MAIN() for windows
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hprev, PSTR cmdline, int ishow);
// The window proc which handles all of window's messages.
LRESULT CALLBACK WinProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam);
// This controls our main program loop
WPARAM MainLoop();
// This loads a texture into openGL from a file (IE, "bitmap.bmp")
void CreateTexture(UINT textureArray[], LPSTR strFileName, int textureID);
// This changes the screen to full screen mode
void ChangeToFullScreen();
// This is our own function that makes creating a window modular and easy
HWND CreateMyWindow(LPSTR strWindowName, int width, int height, DWORD dwStyle, bool bFullScreen, HINSTANCE hInstance);
// This allows us to configure our window for OpenGL and backbuffered
bool bSetupPixelFormat(HDC hdc);
// This inits our screen translations and projections
void SizeOpenGLScreen(int width, int height);
// This sets up OpenGL
void InitializeOpenGL(int width, int height);
// This initializes the whole program
void Init(HWND hWnd);
// This draws everything to the screen
void RenderScene();
// This frees all our memory in our program
void DeInit();
#endif
/////////////////////////////////////////////////////////////////////////////////
//
// * QUICK NOTES *
//
// We added MAX_TEXTURES to this header file. This define is the size of the g_Texture[]
// array, which we also extern here so init.cpp can free it's data.
//
//
// Ben Humphrey (DigiBen)
// Game Programmer
// DigiBen@GameTutorials.com
// Co-Web Host of www.GameTutorials.com
//
// |
|
Currently browsing [GL_Export1.zip] (104,965 bytes) - [BlankProject/resource.h] - (456 bytes)
//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Script1.rc
//
#define IDB_BITMAP1 101
// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 102
#define _APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif
|
|
The zip file viewer built into the Developer Toolbox made use
of the zlib library, as well as the zlibdll source additions.
|